Selected Types of Neural Networks for Magnetoelastic Sensor Error Suppression
نویسنده
چکیده
The main advantage of magnetoelastic sensors in comparison with the classic wire ones or semiconductor ones is their marked sensitivity and higher resistance to environmental moisture. These properties predestinate them for use in civil engineering and geo-technological applications [2]. Magnetoelastic sensors of pressure force are currently based on the change of core permeability caused by mechanical stress, while altering its magnetization. The sensor works as a transformer with a variable coefficient of transformation. Under the action of an external force the output voltage changes. Some shortcomings of magnetoelastic sensors are higher power consumption, noticeable sensor errors, eghysteresis and nonlinearity [6]. At present, the requirements for accuracy and reliability of sensor measuring systems are getting higher. The total accuracy of standard measuring system can be significantly improved by adding a data conditioning block. The aim of the paper is to present selected types of neural networks as an effective tool for errors suppression.
منابع مشابه
Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملارائه یک مدل شبکه عصبی جهت پی شبینی کوتاه مدت قیمت نفت خام
Iran is one of the top five important countries in the world that have rich oil reserves. Exchange incomes produced by oil exports play an important role in country’s budget. Therefore, the studies and researches in fields that are related to oil economics have great privilage. Today, there is a plentiful interest in use of artificial intelligence methods especially neural networks for improvi...
متن کامل3D Path Planning Algorithm for Mobile Anchor-Assisted Positioning in Wireless Sensor Networks
Positioning service is one of Wireless Sensor Networks’ (WSNs) fundamental services. The accurate position of the sensor nodes plays a vital role in many applications of WSNs. In this paper, a 3D positioning algorithm is being proposed, using mobile anchor node to assist sensor nodes in order to estimate their positions in a 3D geospatial environment. However, mobile anchor node’s 3D path optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007